Video details

USENIX Security '20 - An Ever-evolving Game: Evaluation of Real-world Attacks and Defenses


An Ever-evolving Game: Evaluation of Real-world Attacks and Defenses in Ethereum Ecosystem
Shunfan Zhou, Zhemin Yang, and Jie Xiang, Fudan University; Yinzhi Cao, Johns Hopkins University; Min Yang and Yuan Zhang, Fudan University
Smart contract security has drawn much attention due to many severe incidents with huge ether and token losses. As a consequence, researchers have proposed to detect smart contract vulnerabilities via code analysis. However, code analysis only shows what contracts can be attacked, but not what have been attacked, and more importantly, what attacks have been prevented in the real world. In this paper, we present the first comprehensive measurement study to analyze real-world attacks and defenses adopted in the wild based on the transaction logs produced by uninstrumented Ethereum Virtual Machine (EVM). Specifically, our study decouples two important factors of an adversarial transaction-i.e., (i) an adversarial action exploiting the vulnerable contract and (ii) an adversarial consequence like ether or token transfers resulted from the action-for the analysis of attacks and defenses. The results of our study reveal a huge volume of attacks beyond what have been studied in the literature, e.g., those targeting new vulnerability types like airdrop hunting and those targeting zero-day variants of known vulnerabilities. Besides successful attacks, our study also shows attempted attacks that are prevented due to the deployments of defenses. As the nature of cyber-security, those defenses have also been evaded, mainly due to incomplete defense deployments. To summarize it, we believe that this is an ever-evolving game between adversaries obtaining illegal profits and defenders shielding their own contracts.
View the full USENIX Security '20 program at