Video details

USENIX Security '21 - Causal Analysis for Software-Defined Networking Attacks

09.04.2021
English

Causal Analysis for Software-Defined Networking Attacks
Benjamin E. Ujcich, Georgetown University; Samuel Jero and Richard Skowyra, MIT Lincoln Laboratory; Adam Bates, University of Illinois at Urbana-Champaign; William H. Sanders, Carnegie Mellon University; Hamed Okhravi, MIT Lincoln Laboratory
Software-defined networking (SDN) has emerged as a flexible network architecture for central and programmatic control. Although SDN can improve network security oversight and policy enforcement, ensuring the security of SDN from sophisticated attacks is an ongoing challenge for practitioners. Existing network forensics tools attempt to identify and track such attacks, but holistic causal reasoning across control and data planes remains challenging.
We present PicoSDN, a provenance-informed causal observer for SDN attack analysis. PicoSDN leverages fine-grained data and execution partitioning techniques, as well as a unified control and data plane model, to allow practitioners to efficiently determine root causes of attacks and to make informed decisions on mitigating them. We implement PicoSDN on the popular ONOS SDN controller. Our evaluation across several attack case studies shows that PicoSDN is practical for the identification, analysis, and mitigation of SDN attacks.
View the full USENIX Security '21 Program at https://www.usenix.org/conference/usenixsecurity21/technical-sessions